3.1.81 \(\int \sqrt {a+a \cos (c+d x)} (A+C \cos ^2(c+d x)) \sec ^4(c+d x) \, dx\) [81]

3.1.81.1 Optimal result
3.1.81.2 Mathematica [A] (verified)
3.1.81.3 Rubi [A] (verified)
3.1.81.4 Maple [B] (verified)
3.1.81.5 Fricas [A] (verification not implemented)
3.1.81.6 Sympy [F(-1)]
3.1.81.7 Maxima [B] (verification not implemented)
3.1.81.8 Giac [A] (verification not implemented)
3.1.81.9 Mupad [F(-1)]

3.1.81.1 Optimal result

Integrand size = 35, antiderivative size = 153 \[ \int \sqrt {a+a \cos (c+d x)} \left (A+C \cos ^2(c+d x)\right ) \sec ^4(c+d x) \, dx=\frac {\sqrt {a} (5 A+8 C) \text {arctanh}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a+a \cos (c+d x)}}\right )}{8 d}+\frac {a (5 A+8 C) \tan (c+d x)}{8 d \sqrt {a+a \cos (c+d x)}}+\frac {a A \sec (c+d x) \tan (c+d x)}{12 d \sqrt {a+a \cos (c+d x)}}+\frac {A \sqrt {a+a \cos (c+d x)} \sec ^2(c+d x) \tan (c+d x)}{3 d} \]

output
1/8*(5*A+8*C)*arctanh(sin(d*x+c)*a^(1/2)/(a+a*cos(d*x+c))^(1/2))*a^(1/2)/d 
+1/8*a*(5*A+8*C)*tan(d*x+c)/d/(a+a*cos(d*x+c))^(1/2)+1/12*a*A*sec(d*x+c)*t 
an(d*x+c)/d/(a+a*cos(d*x+c))^(1/2)+1/3*A*sec(d*x+c)^2*(a+a*cos(d*x+c))^(1/ 
2)*tan(d*x+c)/d
 
3.1.81.2 Mathematica [A] (verified)

Time = 0.54 (sec) , antiderivative size = 123, normalized size of antiderivative = 0.80 \[ \int \sqrt {a+a \cos (c+d x)} \left (A+C \cos ^2(c+d x)\right ) \sec ^4(c+d x) \, dx=\frac {\sqrt {a (1+\cos (c+d x))} \sec \left (\frac {1}{2} (c+d x)\right ) \sec ^3(c+d x) \left (3 \sqrt {2} (5 A+8 C) \text {arctanh}\left (\sqrt {2} \sin \left (\frac {1}{2} (c+d x)\right )\right ) \cos ^3(c+d x)+(31 A+24 C+20 A \cos (c+d x)+3 (5 A+8 C) \cos (2 (c+d x))) \sin \left (\frac {1}{2} (c+d x)\right )\right )}{48 d} \]

input
Integrate[Sqrt[a + a*Cos[c + d*x]]*(A + C*Cos[c + d*x]^2)*Sec[c + d*x]^4,x 
]
 
output
(Sqrt[a*(1 + Cos[c + d*x])]*Sec[(c + d*x)/2]*Sec[c + d*x]^3*(3*Sqrt[2]*(5* 
A + 8*C)*ArcTanh[Sqrt[2]*Sin[(c + d*x)/2]]*Cos[c + d*x]^3 + (31*A + 24*C + 
 20*A*Cos[c + d*x] + 3*(5*A + 8*C)*Cos[2*(c + d*x)])*Sin[(c + d*x)/2]))/(4 
8*d)
 
3.1.81.3 Rubi [A] (verified)

Time = 0.84 (sec) , antiderivative size = 156, normalized size of antiderivative = 1.02, number of steps used = 11, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.286, Rules used = {3042, 3523, 27, 3042, 3459, 3042, 3251, 3042, 3252, 219}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \sec ^4(c+d x) \sqrt {a \cos (c+d x)+a} \left (A+C \cos ^2(c+d x)\right ) \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sqrt {a \sin \left (c+d x+\frac {\pi }{2}\right )+a} \left (A+C \sin \left (c+d x+\frac {\pi }{2}\right )^2\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^4}dx\)

\(\Big \downarrow \) 3523

\(\displaystyle \frac {\int \frac {1}{2} \sqrt {\cos (c+d x) a+a} (a A+3 a (A+2 C) \cos (c+d x)) \sec ^3(c+d x)dx}{3 a}+\frac {A \tan (c+d x) \sec ^2(c+d x) \sqrt {a \cos (c+d x)+a}}{3 d}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\int \sqrt {\cos (c+d x) a+a} (a A+3 a (A+2 C) \cos (c+d x)) \sec ^3(c+d x)dx}{6 a}+\frac {A \tan (c+d x) \sec ^2(c+d x) \sqrt {a \cos (c+d x)+a}}{3 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right ) a+a} \left (a A+3 a (A+2 C) \sin \left (c+d x+\frac {\pi }{2}\right )\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^3}dx}{6 a}+\frac {A \tan (c+d x) \sec ^2(c+d x) \sqrt {a \cos (c+d x)+a}}{3 d}\)

\(\Big \downarrow \) 3459

\(\displaystyle \frac {\frac {3}{4} a (5 A+8 C) \int \sqrt {\cos (c+d x) a+a} \sec ^2(c+d x)dx+\frac {a^2 A \tan (c+d x) \sec (c+d x)}{2 d \sqrt {a \cos (c+d x)+a}}}{6 a}+\frac {A \tan (c+d x) \sec ^2(c+d x) \sqrt {a \cos (c+d x)+a}}{3 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {3}{4} a (5 A+8 C) \int \frac {\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right ) a+a}}{\sin \left (c+d x+\frac {\pi }{2}\right )^2}dx+\frac {a^2 A \tan (c+d x) \sec (c+d x)}{2 d \sqrt {a \cos (c+d x)+a}}}{6 a}+\frac {A \tan (c+d x) \sec ^2(c+d x) \sqrt {a \cos (c+d x)+a}}{3 d}\)

\(\Big \downarrow \) 3251

\(\displaystyle \frac {\frac {3}{4} a (5 A+8 C) \left (\frac {1}{2} \int \sqrt {\cos (c+d x) a+a} \sec (c+d x)dx+\frac {a \tan (c+d x)}{d \sqrt {a \cos (c+d x)+a}}\right )+\frac {a^2 A \tan (c+d x) \sec (c+d x)}{2 d \sqrt {a \cos (c+d x)+a}}}{6 a}+\frac {A \tan (c+d x) \sec ^2(c+d x) \sqrt {a \cos (c+d x)+a}}{3 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {3}{4} a (5 A+8 C) \left (\frac {1}{2} \int \frac {\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right ) a+a}}{\sin \left (c+d x+\frac {\pi }{2}\right )}dx+\frac {a \tan (c+d x)}{d \sqrt {a \cos (c+d x)+a}}\right )+\frac {a^2 A \tan (c+d x) \sec (c+d x)}{2 d \sqrt {a \cos (c+d x)+a}}}{6 a}+\frac {A \tan (c+d x) \sec ^2(c+d x) \sqrt {a \cos (c+d x)+a}}{3 d}\)

\(\Big \downarrow \) 3252

\(\displaystyle \frac {\frac {3}{4} a (5 A+8 C) \left (\frac {a \tan (c+d x)}{d \sqrt {a \cos (c+d x)+a}}-\frac {a \int \frac {1}{a-\frac {a^2 \sin ^2(c+d x)}{\cos (c+d x) a+a}}d\left (-\frac {a \sin (c+d x)}{\sqrt {\cos (c+d x) a+a}}\right )}{d}\right )+\frac {a^2 A \tan (c+d x) \sec (c+d x)}{2 d \sqrt {a \cos (c+d x)+a}}}{6 a}+\frac {A \tan (c+d x) \sec ^2(c+d x) \sqrt {a \cos (c+d x)+a}}{3 d}\)

\(\Big \downarrow \) 219

\(\displaystyle \frac {\frac {a^2 A \tan (c+d x) \sec (c+d x)}{2 d \sqrt {a \cos (c+d x)+a}}+\frac {3}{4} a (5 A+8 C) \left (\frac {\sqrt {a} \text {arctanh}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a \cos (c+d x)+a}}\right )}{d}+\frac {a \tan (c+d x)}{d \sqrt {a \cos (c+d x)+a}}\right )}{6 a}+\frac {A \tan (c+d x) \sec ^2(c+d x) \sqrt {a \cos (c+d x)+a}}{3 d}\)

input
Int[Sqrt[a + a*Cos[c + d*x]]*(A + C*Cos[c + d*x]^2)*Sec[c + d*x]^4,x]
 
output
(A*Sqrt[a + a*Cos[c + d*x]]*Sec[c + d*x]^2*Tan[c + d*x])/(3*d) + ((a^2*A*S 
ec[c + d*x]*Tan[c + d*x])/(2*d*Sqrt[a + a*Cos[c + d*x]]) + (3*a*(5*A + 8*C 
)*((Sqrt[a]*ArcTanh[(Sqrt[a]*Sin[c + d*x])/Sqrt[a + a*Cos[c + d*x]]])/d + 
(a*Tan[c + d*x])/(d*Sqrt[a + a*Cos[c + d*x]])))/4)/(6*a)
 

3.1.81.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3251
Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((c_.) + (d_.)*sin[(e_.) + ( 
f_.)*(x_)])^(n_), x_Symbol] :> Simp[(b*c - a*d)*Cos[e + f*x]*((c + d*Sin[e 
+ f*x])^(n + 1)/(f*(n + 1)*(c^2 - d^2)*Sqrt[a + b*Sin[e + f*x]])), x] + Sim 
p[(2*n + 3)*((b*c - a*d)/(2*b*(n + 1)*(c^2 - d^2)))   Int[Sqrt[a + b*Sin[e 
+ f*x]]*(c + d*Sin[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, c, d, e, f}, x 
] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[n, 
-1] && NeQ[2*n + 3, 0] && IntegerQ[2*n]
 

rule 3252
Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/((c_.) + (d_.)*sin[(e_.) + ( 
f_.)*(x_)]), x_Symbol] :> Simp[-2*(b/f)   Subst[Int[1/(b*c + a*d - d*x^2), 
x], x, b*(Cos[e + f*x]/Sqrt[a + b*Sin[e + f*x]])], x] /; FreeQ[{a, b, c, d, 
 e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]
 

rule 3459
Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((A_.) + (B_.)*sin[(e_.) + ( 
f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp 
[(-b^2)*(B*c - A*d)*Cos[e + f*x]*((c + d*Sin[e + f*x])^(n + 1)/(d*f*(n + 1) 
*(b*c + a*d)*Sqrt[a + b*Sin[e + f*x]])), x] + Simp[(A*b*d*(2*n + 3) - B*(b* 
c - 2*a*d*(n + 1)))/(2*d*(n + 1)*(b*c + a*d))   Int[Sqrt[a + b*Sin[e + f*x] 
]*(c + d*Sin[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, c, d, e, f, A, B}, x 
] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[n, 
-1]
 

rule 3523
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.) + 
 (f_.)*(x_)])^(n_)*((A_.) + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> 
Simp[(-(c^2*C + A*d^2))*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + 
 f*x])^(n + 1)/(d*f*(n + 1)*(c^2 - d^2))), x] + Simp[1/(b*d*(n + 1)*(c^2 - 
d^2))   Int[(a + b*Sin[e + f*x])^m*(c + d*Sin[e + f*x])^(n + 1)*Simp[A*d*(a 
*d*m + b*c*(n + 1)) + c*C*(a*c*m + b*d*(n + 1)) - b*(A*d^2*(m + n + 2) + C* 
(c^2*(m + 1) + d^2*(n + 1)))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, 
 e, f, A, C, m}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - 
d^2, 0] &&  !LtQ[m, -2^(-1)] && (LtQ[n, -1] || EqQ[m + n + 2, 0])
 
3.1.81.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(1101\) vs. \(2(133)=266\).

Time = 9.89 (sec) , antiderivative size = 1102, normalized size of antiderivative = 7.20

method result size
parts \(\text {Expression too large to display}\) \(1102\)
default \(\text {Expression too large to display}\) \(1327\)

input
int((A+C*cos(d*x+c)^2)*sec(d*x+c)^4*(a+cos(d*x+c)*a)^(1/2),x,method=_RETUR 
NVERBOSE)
 
output
1/6*A*cos(1/2*d*x+1/2*c)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*(-120*a*(ln(4/(2*c 
os(1/2*d*x+1/2*c)+2^(1/2))*(2^(1/2)*a*cos(1/2*d*x+1/2*c)+2^(1/2)*(a*sin(1/ 
2*d*x+1/2*c)^2)^(1/2)*a^(1/2)+2*a))+ln(-4/(2*cos(1/2*d*x+1/2*c)-2^(1/2))*( 
2^(1/2)*a*cos(1/2*d*x+1/2*c)-2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2 
)-2*a)))*sin(1/2*d*x+1/2*c)^6+60*(2*2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2) 
*a^(1/2)+3*ln(4/(2*cos(1/2*d*x+1/2*c)+2^(1/2))*(2^(1/2)*a*cos(1/2*d*x+1/2* 
c)+2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)+2*a))*a+3*ln(-4/(2*cos(1 
/2*d*x+1/2*c)-2^(1/2))*(2^(1/2)*a*cos(1/2*d*x+1/2*c)-2^(1/2)*(a*sin(1/2*d* 
x+1/2*c)^2)^(1/2)*a^(1/2)-2*a))*a)*sin(1/2*d*x+1/2*c)^4+(-90*ln(-4/(2*cos( 
1/2*d*x+1/2*c)-2^(1/2))*(2^(1/2)*a*cos(1/2*d*x+1/2*c)-2^(1/2)*(a*sin(1/2*d 
*x+1/2*c)^2)^(1/2)*a^(1/2)-2*a))*a-90*ln(4/(2*cos(1/2*d*x+1/2*c)+2^(1/2))* 
(2^(1/2)*a*cos(1/2*d*x+1/2*c)+2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/ 
2)+2*a))*a-160*2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2))*sin(1/2*d*x 
+1/2*c)^2+15*ln(-4/(2*cos(1/2*d*x+1/2*c)-2^(1/2))*(2^(1/2)*a*cos(1/2*d*x+1 
/2*c)-2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)-2*a))*a+15*ln(4/(2*co 
s(1/2*d*x+1/2*c)+2^(1/2))*(2^(1/2)*a*cos(1/2*d*x+1/2*c)+2^(1/2)*(a*sin(1/2 
*d*x+1/2*c)^2)^(1/2)*a^(1/2)+2*a))*a+66*2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^( 
1/2)*a^(1/2))/a^(1/2)/(2*cos(1/2*d*x+1/2*c)-2^(1/2))^3/(2*cos(1/2*d*x+1/2* 
c)+2^(1/2))^3/sin(1/2*d*x+1/2*c)/(a*cos(1/2*d*x+1/2*c)^2)^(1/2)/d+C*cos(1/ 
2*d*x+1/2*c)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*a*(ln(2/(2*cos(1/2*d*x+...
 
3.1.81.5 Fricas [A] (verification not implemented)

Time = 0.31 (sec) , antiderivative size = 191, normalized size of antiderivative = 1.25 \[ \int \sqrt {a+a \cos (c+d x)} \left (A+C \cos ^2(c+d x)\right ) \sec ^4(c+d x) \, dx=\frac {3 \, {\left ({\left (5 \, A + 8 \, C\right )} \cos \left (d x + c\right )^{4} + {\left (5 \, A + 8 \, C\right )} \cos \left (d x + c\right )^{3}\right )} \sqrt {a} \log \left (\frac {a \cos \left (d x + c\right )^{3} - 7 \, a \cos \left (d x + c\right )^{2} - 4 \, \sqrt {a \cos \left (d x + c\right ) + a} \sqrt {a} {\left (\cos \left (d x + c\right ) - 2\right )} \sin \left (d x + c\right ) + 8 \, a}{\cos \left (d x + c\right )^{3} + \cos \left (d x + c\right )^{2}}\right ) + 4 \, {\left (3 \, {\left (5 \, A + 8 \, C\right )} \cos \left (d x + c\right )^{2} + 10 \, A \cos \left (d x + c\right ) + 8 \, A\right )} \sqrt {a \cos \left (d x + c\right ) + a} \sin \left (d x + c\right )}{96 \, {\left (d \cos \left (d x + c\right )^{4} + d \cos \left (d x + c\right )^{3}\right )}} \]

input
integrate((A+C*cos(d*x+c)^2)*sec(d*x+c)^4*(a+a*cos(d*x+c))^(1/2),x, algori 
thm="fricas")
 
output
1/96*(3*((5*A + 8*C)*cos(d*x + c)^4 + (5*A + 8*C)*cos(d*x + c)^3)*sqrt(a)* 
log((a*cos(d*x + c)^3 - 7*a*cos(d*x + c)^2 - 4*sqrt(a*cos(d*x + c) + a)*sq 
rt(a)*(cos(d*x + c) - 2)*sin(d*x + c) + 8*a)/(cos(d*x + c)^3 + cos(d*x + c 
)^2)) + 4*(3*(5*A + 8*C)*cos(d*x + c)^2 + 10*A*cos(d*x + c) + 8*A)*sqrt(a* 
cos(d*x + c) + a)*sin(d*x + c))/(d*cos(d*x + c)^4 + d*cos(d*x + c)^3)
 
3.1.81.6 Sympy [F(-1)]

Timed out. \[ \int \sqrt {a+a \cos (c+d x)} \left (A+C \cos ^2(c+d x)\right ) \sec ^4(c+d x) \, dx=\text {Timed out} \]

input
integrate((A+C*cos(d*x+c)**2)*sec(d*x+c)**4*(a+a*cos(d*x+c))**(1/2),x)
 
output
Timed out
 
3.1.81.7 Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 3088 vs. \(2 (133) = 266\).

Time = 0.58 (sec) , antiderivative size = 3088, normalized size of antiderivative = 20.18 \[ \int \sqrt {a+a \cos (c+d x)} \left (A+C \cos ^2(c+d x)\right ) \sec ^4(c+d x) \, dx=\text {Too large to display} \]

input
integrate((A+C*cos(d*x+c)^2)*sec(d*x+c)^4*(a+a*cos(d*x+c))^(1/2),x, algori 
thm="maxima")
 
output
-1/96*((120*(sin(6*d*x + 6*c) + 3*sin(4*d*x + 4*c) + 3*sin(2*d*x + 2*c))*c 
os(13/2*d*x + 13/2*c) - 8*(15*sin(11/2*d*x + 11/2*c) + 50*sin(9/2*d*x + 9/ 
2*c) + 42*sin(7/2*d*x + 7/2*c) + 3*sin(5/2*d*x + 5/2*c) - 5*sin(3/2*d*x + 
3/2*c))*cos(6*d*x + 6*c) + 360*(sin(4*d*x + 4*c) + sin(2*d*x + 2*c))*cos(1 
1/2*d*x + 11/2*c) + 1200*(sin(4*d*x + 4*c) + sin(2*d*x + 2*c))*cos(9/2*d*x 
 + 9/2*c) - 24*(42*sin(7/2*d*x + 7/2*c) + 3*sin(5/2*d*x + 5/2*c) - 5*sin(3 
/2*d*x + 3/2*c))*cos(4*d*x + 4*c) - 15*(sqrt(2)*cos(6*d*x + 6*c)^2 + 9*sqr 
t(2)*cos(4*d*x + 4*c)^2 + 9*sqrt(2)*cos(2*d*x + 2*c)^2 + sqrt(2)*sin(6*d*x 
 + 6*c)^2 + 9*sqrt(2)*sin(4*d*x + 4*c)^2 + 18*sqrt(2)*sin(4*d*x + 4*c)*sin 
(2*d*x + 2*c) + 9*sqrt(2)*sin(2*d*x + 2*c)^2 + 2*(3*sqrt(2)*cos(4*d*x + 4* 
c) + 3*sqrt(2)*cos(2*d*x + 2*c) + sqrt(2))*cos(6*d*x + 6*c) + 6*(3*sqrt(2) 
*cos(2*d*x + 2*c) + sqrt(2))*cos(4*d*x + 4*c) + 6*(sqrt(2)*sin(4*d*x + 4*c 
) + sqrt(2)*sin(2*d*x + 2*c))*sin(6*d*x + 6*c) + 6*sqrt(2)*cos(2*d*x + 2*c 
) + sqrt(2))*log(2*cos(1/2*arctan2(sin(d*x + c), cos(d*x + c)))^2 + 2*sin( 
1/2*arctan2(sin(d*x + c), cos(d*x + c)))^2 + 2*sqrt(2)*cos(1/2*arctan2(sin 
(d*x + c), cos(d*x + c))) + 2*sqrt(2)*sin(1/2*arctan2(sin(d*x + c), cos(d* 
x + c))) + 2) + 15*(sqrt(2)*cos(6*d*x + 6*c)^2 + 9*sqrt(2)*cos(4*d*x + 4*c 
)^2 + 9*sqrt(2)*cos(2*d*x + 2*c)^2 + sqrt(2)*sin(6*d*x + 6*c)^2 + 9*sqrt(2 
)*sin(4*d*x + 4*c)^2 + 18*sqrt(2)*sin(4*d*x + 4*c)*sin(2*d*x + 2*c) + 9*sq 
rt(2)*sin(2*d*x + 2*c)^2 + 2*(3*sqrt(2)*cos(4*d*x + 4*c) + 3*sqrt(2)*co...
 
3.1.81.8 Giac [A] (verification not implemented)

Time = 0.37 (sec) , antiderivative size = 244, normalized size of antiderivative = 1.59 \[ \int \sqrt {a+a \cos (c+d x)} \left (A+C \cos ^2(c+d x)\right ) \sec ^4(c+d x) \, dx=-\frac {\sqrt {2} {\left (3 \, \sqrt {2} {\left (5 \, A \mathrm {sgn}\left (\cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right ) + 8 \, C \mathrm {sgn}\left (\cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )\right )} \log \left (\frac {{\left | -2 \, \sqrt {2} + 4 \, \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) \right |}}{{\left | 2 \, \sqrt {2} + 4 \, \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) \right |}}\right ) + \frac {4 \, {\left (60 \, A \mathrm {sgn}\left (\cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right ) \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} + 96 \, C \mathrm {sgn}\left (\cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right ) \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} - 80 \, A \mathrm {sgn}\left (\cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right ) \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - 96 \, C \mathrm {sgn}\left (\cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right ) \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + 33 \, A \mathrm {sgn}\left (\cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right ) \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 24 \, C \mathrm {sgn}\left (\cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right ) \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )}}{{\left (2 \, \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 1\right )}^{3}}\right )} \sqrt {a}}{96 \, d} \]

input
integrate((A+C*cos(d*x+c)^2)*sec(d*x+c)^4*(a+a*cos(d*x+c))^(1/2),x, algori 
thm="giac")
 
output
-1/96*sqrt(2)*(3*sqrt(2)*(5*A*sgn(cos(1/2*d*x + 1/2*c)) + 8*C*sgn(cos(1/2* 
d*x + 1/2*c)))*log(abs(-2*sqrt(2) + 4*sin(1/2*d*x + 1/2*c))/abs(2*sqrt(2) 
+ 4*sin(1/2*d*x + 1/2*c))) + 4*(60*A*sgn(cos(1/2*d*x + 1/2*c))*sin(1/2*d*x 
 + 1/2*c)^5 + 96*C*sgn(cos(1/2*d*x + 1/2*c))*sin(1/2*d*x + 1/2*c)^5 - 80*A 
*sgn(cos(1/2*d*x + 1/2*c))*sin(1/2*d*x + 1/2*c)^3 - 96*C*sgn(cos(1/2*d*x + 
 1/2*c))*sin(1/2*d*x + 1/2*c)^3 + 33*A*sgn(cos(1/2*d*x + 1/2*c))*sin(1/2*d 
*x + 1/2*c) + 24*C*sgn(cos(1/2*d*x + 1/2*c))*sin(1/2*d*x + 1/2*c))/(2*sin( 
1/2*d*x + 1/2*c)^2 - 1)^3)*sqrt(a)/d
 
3.1.81.9 Mupad [F(-1)]

Timed out. \[ \int \sqrt {a+a \cos (c+d x)} \left (A+C \cos ^2(c+d x)\right ) \sec ^4(c+d x) \, dx=\int \frac {\left (C\,{\cos \left (c+d\,x\right )}^2+A\right )\,\sqrt {a+a\,\cos \left (c+d\,x\right )}}{{\cos \left (c+d\,x\right )}^4} \,d x \]

input
int(((A + C*cos(c + d*x)^2)*(a + a*cos(c + d*x))^(1/2))/cos(c + d*x)^4,x)
 
output
int(((A + C*cos(c + d*x)^2)*(a + a*cos(c + d*x))^(1/2))/cos(c + d*x)^4, x)